鼻咽癌(NPC)是由鼻咽引起的恶性上皮癌。生存预测是NPC患者的主要关注点,因为它提供了早期的预后信息来计划治疗。最近,基于深度学习的深层生存模型已经证明了胜过基于传统放射素学的生存预测模型的潜力。深度存活模型通常使用覆盖整个目标区域的图像贴片(例如,NPC的鼻咽)或仅包含分段肿瘤区域作为输入。但是,使用整个目标区域的模型还将包括非相关的背景信息,而使用分段肿瘤区域的模型将无视原发性肿瘤不存在的潜在预后信息(例如,局部淋巴结转移和相邻的组织侵入)。在这项研究中,我们提出了一个3D端到端的深层多任务生存模型(DEEPMTS),用于从预处理PET/CT的晚期NPC中进行关节存活预测和肿瘤分割。我们的新颖性是引入硬分段分割主链,以指导与原发性肿瘤相关的局部特征的提取,从而减少了非相关背景信息的干扰。此外,我们还引入了一个级联的生存网络,以捕获原发性肿瘤中存在的预后信息,并进一步利用从分段主链中得出的全球肿瘤信息(例如,肿瘤的大小,形状和位置)。我们使用两个临床数据集进行的实验表明,我们的DEEPMT始终超过传统的基于放射线学的生存预测模型和现有的深层生存模型。
translated by 谷歌翻译
目的:基于深度学习的放射素学(DLR)在医学图像分析中取得了巨大的成功,并被认为是依赖手工特征的常规放射线学的替代。在这项研究中,我们旨在探索DLR使用预处理PET/CT预测鼻咽癌(NPC)中5年无进展生存期(PFS)的能力。方法:总共招募了257名患者(内部/外部队列中的170/87),具有晚期NPC(TNM III期或IVA)。我们开发了一个端到端的多模式DLR模型,其中优化了3D卷积神经网络以从预处理PET/CT图像中提取深度特征,并预测了5年PFS的概率。作为高级临床特征,TNM阶段可以集成到我们的DLR模型中,以进一步提高预后性能。为了比较常规放射素学和DLR,提取了1456个手工制作的特征,并从54种特征选择方法和9种分类方法的54个交叉组合中选择了最佳常规放射线方法。此外,使用临床特征,常规放射线学签名和DLR签名进行风险组分层。结果:我们使用PET和CT的多模式DLR模型比最佳常规放射线方法获得了更高的预后性能。此外,多模式DLR模型仅使用PET或仅CT优于单模式DLR模型。对于风险组分层,常规的放射线学签名和DLR签名使内部和外部队列中的高风险患者群体之间有显着差异,而外部队列中的临床特征则失败。结论:我们的研究确定了高级NPC中生存预测的潜在预后工具,表明DLR可以为当前TNM分期提供互补值。
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
通过计算机断层扫描(CT)检测到的肾上腺(肾上腺肿块)中肿块病变的准确分类对于诊断和患者管理很重要。肾上腺肿块可能是良性或恶性肿瘤,良性肿块的患病率有所不同。基于卷积神经网络(CNN)的分类方法是最大程度地提高大型医学成像训练数据集中阶层差异的最新方法。由于质量病变的大小,CNN的应用,在肾上腺肿块上的应用是具有挑战性的,这是具有挑战性的。我们开发了一个深度的多尺度相似网络(DMRN),以克服这些局限性,并杠杆配对的CNN来评估阶层内相似性。我们使用多尺度功能嵌入来改善类间的可分离性,通过迭代地组合在输入的不同尺度上产生的互补信息以创建结构化特征描述符。我们用随机采样的配对肾上腺肿块增强了训练数据,以减少训练数据不平衡的影响。我们使用229张CT扫描肾上腺肿块患者进行评估。在五倍的交叉验证中,与最先进的方法相比,我们的方法的结果最好(准确性89.52%)(p <0.05)。我们对ImageClef 2016竞赛数据集进行了医学子图分类的竞争数据集进行了普遍分析,该数据集由30个类别的6,776张图像和4,166张图像组成的培训集组成。与现有方法相比,我们的方法获得了更好的分类性能(精度为85.90%),并且与需要额外培训数据的方法相比(准确性降低1.47%)相比具有竞争力。我们在CT上的DMRN亚分类肾上腺肿块,优于最先进的方法。
translated by 谷歌翻译
Prostate cancer (PCa) is one of the most prevalent cancers in men and many people around the world die from clinically significant PCa (csPCa). Early diagnosis of csPCa in bi-parametric MRI (bpMRI), which is non-invasive, cost-effective, and more efficient compared to multiparametric MRI (mpMRI), can contribute to precision care for PCa. The rapid rise in artificial intelligence (AI) algorithms are enabling unprecedented improvements in providing decision support systems that can aid in csPCa diagnosis and understanding. However, existing state of the art AI algorithms which are based on deep learning technology are often limited to 2D images that fails to capture inter-slice correlations in 3D volumetric images. The use of 3D convolutional neural networks (CNNs) partly overcomes this limitation, but it does not adapt to the anisotropy of images, resulting in sub-optimal semantic representation and poor generalization. Furthermore, due to the limitation of the amount of labelled data of bpMRI and the difficulty of labelling, existing CNNs are built on relatively small datasets, leading to a poor performance. To address the limitations identified above, we propose a new Zonal-aware Self-supervised Mesh Network (Z-SSMNet) that adaptatively fuses multiple 2D, 2.5D and 3D CNNs to effectively balance representation for sparse inter-slice information and dense intra-slice information in bpMRI. A self-supervised learning (SSL) technique is further introduced to pre-train our network using unlabelled data to learn the generalizable image features. Furthermore, we constrained our network to understand the zonal specific domain knowledge to improve the diagnosis precision of csPCa. Experiments on the PI-CAI Challenge dataset demonstrate our proposed method achieves better performance for csPCa detection and diagnosis in bpMRI.
translated by 谷歌翻译
The last several years have witnessed remarkable progress in video-and-language (VidL) understanding. However, most modern VidL approaches use complex and specialized model architectures and sophisticated pretraining protocols, making the reproducibility, analysis and comparisons of these frameworks difficult. Hence, instead of proposing yet another new VidL model, this paper conducts a thorough empirical study demystifying the most important factors in the VidL model design. Among the factors that we investigate are (i) the spatiotemporal architecture design, (ii) the multimodal fusion schemes, (iii) the pretraining objectives, (iv) the choice of pretraining data, (v) pretraining and finetuning protocols, and (vi) dataset and model scaling. Our empirical study reveals that the most important design factors include: temporal modeling, video-to-text multimodal fusion, masked modeling objectives, and joint training on images and videos. Using these empirical insights, we then develop a step-by-step recipe, dubbed VindLU, for effective VidL pretraining. Our final model trained using our recipe achieves comparable or better than state-of-the-art results on several VidL tasks without relying on external CLIP pretraining. In particular, on the text-to-video retrieval task, our approach obtains 61.2% on DiDeMo, and 55.0% on ActivityNet, outperforming current SOTA by 7.8% and 6.1% respectively. Furthermore, our model also obtains state-of-the-art video question-answering results on ActivityNet-QA, MSRVTT-QA, MSRVTT-MC and TVQA. Our code and pretrained models are publicly available at: https://github.com/klauscc/VindLU.
translated by 谷歌翻译
Outcome prediction is crucial for head and neck cancer patients as it can provide prognostic information for early treatment planning. Radiomics methods have been widely used for outcome prediction from medical images. However, these methods are limited by their reliance on intractable manual segmentation of tumor regions. Recently, deep learning methods have been proposed to perform end-to-end outcome prediction so as to remove the reliance on manual segmentation. Unfortunately, without segmentation masks, these methods will take the whole image as input, such that makes them difficult to focus on tumor regions and potentially unable to fully leverage the prognostic information within the tumor regions. In this study, we propose a radiomics-enhanced deep multi-task framework for outcome prediction from PET/CT images, in the context of HEad and neCK TumOR segmentation and outcome prediction challenge (HECKTOR 2022). In our framework, our novelty is to incorporate radiomics as an enhancement to our recently proposed Deep Multi-task Survival model (DeepMTS). The DeepMTS jointly learns to predict the survival risk scores of patients and the segmentation masks of tumor regions. Radiomics features are extracted from the predicted tumor regions and combined with the predicted survival risk scores for final outcome prediction, through which the prognostic information in tumor regions can be further leveraged. Our method achieved a C-index of 0.681 on the testing set, placing the 2nd on the leaderboard with only 0.00068 lower in C-index than the 1st place.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
步态冻结(FOG)是帕金森氏病的最常见症状之一,这是中枢神经系统的神经退行性疾病,影响了世界各地数百万的人。为了满足提高雾的治疗质量的紧迫需求,设计雾计算机辅助检测和量化工具的需求越来越重要。作为一种用于收集运动模式的非侵入性技术,从压力敏感步态垫中获得的脚步压力序列为评估诊所和家庭环境中的雾气提供了绝佳的机会。在这项研究中,提出了雾检测为一项顺序建模任务,并提出了一种新颖的深度学习结构,即对对抗性时空网络(ASTN),提出了跨多个级别的雾模式。引入了一种新型的对抗训练方案,并具有多级主题鉴别器,以获得独立的雾代表示,这有助于降低由于高主体间方差而导致的过度拟合风险。结果,对于看不见的受试者,可以实现强大的雾检测。拟议的计划还阐明了从其他场景中改善主题级临床研究,因为它可以与许多现有的深层建筑集成在一起。据我们所知,这是基于脚步压力的雾检测的最早研究之一,利用ASTN的方法是追求独立于主题的表示形式的第一个深神经网络架构。从21名受试者收集的393次试验的实验结果表明,AUC 0.85的雾检测提出的ASTN表现令人鼓舞。
translated by 谷歌翻译
光学计算是一种新兴技术,用于下一代高效人工智能(AI),其速度和效率超高。电磁场模拟对于光子设备和电路的设计,优化和验证至关重要。但是,昂贵的数值模拟显着阻碍了光子电路设计循环中的可扩展性和转环。最近,已经提出了物理信息的神经网络来预测具有预定义参数的部分微分方程(PDE)的单个实例的光场解。它们复杂的PDE公式和缺乏有效的参数化机制限制了其在实际模拟方案中的灵活性和概括。在这项工作中,首次提出了一个被称为Neurolight的物理敏捷神经操作员框架,以学习一个频率域的麦克斯韦PDE家族,以进行超快速的参数光子设备模拟。我们通过几种新技术来平衡神经照明的效率和概括。具体而言,我们将不同的设备离散到统一域中,代表具有紧凑型波的参数PDE,并通过掩盖的源建模编码入射光。我们使用参数效率高的跨形神经块设计模型,并采用基于叠加的增强来进行数据效率学习。通过这些协同方法,神经亮像可以概括为大量的看不见的模拟设置,比数值求解器显示了2个磁性的模拟速度,并且比先前的神经网络模型优于降低54%的预测误差,而降低了约44%的参数。 。我们的代码可在https://github.com/jeremiemelo/neurolight上找到。
translated by 谷歌翻译